BRONX COMMUNITY COLLEGE

 of the City University of New York
DEPARTMENT OF MATHEMATICS \& COMPUTER SCIENCE

CSI 30
Take Home Exam
Spring 2024
Day: 05/01/2024

Print Name:

\qquad

1. Given the algorithm:
```
procedure partial( }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\mp@subsup{a}{3}{},\ldots,\mp@subsup{a}{n}{}:\mathrm{ integers)
```

$\operatorname{prod}_{1}:=1$
$\operatorname{prod}_{2}:=1$
for $\mathrm{i}:=1$ to n
if $\left(a_{i}>0\right): \operatorname{prod}_{1}:=\operatorname{prod}_{1} \cdot a_{i}$
if $\left(a_{i}<0\right): \operatorname{prod}_{2}:=\operatorname{prod}_{2} \cdot a_{i}$
return $\left(\right.$ prod $_{1}$, prod $\left._{2}\right)$

For the set of values $-6,2,-3,-8,10,3,-1$ as input for the above algorithm, what are values of prod_{1} and prod_{2} that will be returned?
2. Describe the steps in the binary search to find the location of 9 in the following list: $\{1,6,8,9,13,14,16,22,36,38\}$.
3. Use bubble sort to put the list $\{7,3,5,1,2\}$ into increasing order. How many comparison were performed?
4. Use insertion sort to put the list $\{7,3,5,1,2\}$ into increasing order. How many comparison were performed?
5. Find the greatest common divisor $\operatorname{GCD}(888,54)$ using the Euclidean Algorithm:
procedure GCD (a, b: positive integers):
$\mathrm{x}:=\mathrm{a}$
$\mathrm{y}:=\mathrm{b}$
While $y \neq 0$:
$\mathrm{r}:=\mathrm{x} \bmod \mathrm{y}$
$\mathrm{x}:=\mathrm{y}$
$\mathrm{y}:=\mathrm{r}$
return('The GCD is' : x)
Find integers t, s such that $888 t+54 s=\operatorname{GCD}(888,54)$.
6. Find the expansion of 211 in base 5 .
7. Find the base 16 expansion of 211. (Use the symbols $\mathrm{A}=10, \mathrm{~B}=11, \ldots, \mathrm{~F}=15$.)
8. Compute the decimal representation of $(17561)_{8}$.
9. Compute the decimal representation of $(12201)_{3}$.
10. Compute, without a calculator $(98 \cdot 102) \bmod 100$.
11. Find, without a calculator $4^{100} \bmod 5$.
12. Find, without a calculator, the last digit of 3^{110}.
13. Show that the equation:

$$
x^{2}+y^{2}=4 z+3
$$

has no solutions $x, y, z \in \mathbb{Z}$. Hint: Use congruence $\bmod 4$.
14. Let $x, y \in \mathbb{N}$ be relatively prime. If the product $x y$ is a perfect square, prove that x and y must both be perfect squares. Hint: use the Fundamental Theorem of Arithmetic.

